
Coordinating Full-body Character Controllers With Shadows
Nathan Marshak, Alexander Shoulson, Mubbasir Kapadia, and Norman Badler

SIG Center for Computer Graphics, University of Pennsylvania

{nmarshak, shoulson, mubbasir, badler}@seas.upenn.edu

Problem
• Agents in the ADAPT platform are animated with controllers. Controllers modify

subsets of the character’s transform hierarchy, to satisfy some objective. Examples
include gazing, locomotion, and reaching.

• Agents that can perform many tasks must have many controllers attached to them. When
the number of controllers becomes large, adding new controllers without breaking the
older ones is challenging. In addition, adding many controllers without introducing
snapping or jerkiness can be difficult.

Future Work
• The master controller must be modified when new controllers are added. This could be

automated with a messaging interface in which controllers are registered with the master
controller.

• A GUI could be written to simplify authoring of blend trees like the one in described in “Using
Shadows to Coordinate Controllers”.

• Support for blending skeletal hierarchies different from the character’s should be added. E.g.
some controllers may only control a partial skeleton, others expect an additional root node.

• Adding complex controllers can be painful due to the number of references that need to be
changed. Some of this could be automated with features like reflection in C#.

Acknowledgements
• Project developed as an extension of the Agent Development And Prototyping Testbed (ADAPT).

• Ari Shapiro and Wei-Wen Feng for support with SMARTBody (www.smartbody-anim.org).

• Parts of this research were supported by U.S. Army MURI “SUBTLE” and U.S. Army Robotics
Collaborative Technology Alliance. The opinions expressed are solely those of the authors and not the
sponsors.

• Poster template modified from “Approximate Correspondences in High Dimensions” by Kristen
Grauman and Trevor Darrell. Template found in Ben Sapp’s slides. Switch symbol from Wikipedia.

• The master controller interpolates the skeletons based on per-controller and per-joint blend weights
(e.g. wA, wB, wC). It can crossfade controllers by adjusting blend weights. Controllers can now be
crossfaded rather than turned on and off naively, eliminating snapping.

• The master controller sends messages to each individual controller, thus there is no need for
controllers to communicate with each other. As a result, adding new controllers is less likely to turn
into an n2 problem.

• Controllers can OUTPUT their shadow as an ordered array of transforms. Controllers can take these
arrays as INPUT, modify the transforms, and apply it to the shadow. This allows us implement blend
trees INSIDE the master controller. See diagram below for an example.

• Blend trees allow us to specify the order in which controllers act on the skeleton’s state. In the example
above, four controllers are blended FIRST, and then the gazing controller procedurally twists the
output. This allows us to twist the character from an arbitrary pose. The gazing controller is blended
with the non-twisted skeleton, which allows us to fade the controller in and out.

• Existing controllers are modified for use with shadows by inheriting from a C# interface, and by
changing pointers from a character’s skeleton (e.g. this.transform.root) to pointers to the
shadow’s skeleton (e.g. this.shadowMan.root).

Using Shadows to Coordinate Controllers
• Each controller is instantiated with its own skeleton that matches the character’s skeleton. In other

words, each controller has its own “personal” skeleton. We call this “personal skeleton” a SHADOW.

Gesture
Controller

Locomotion
Controller

Idle
Controller

Sitting
Controller

Blend()
Gazing

Controller
Blend()

Output of Master
Controller

Controllers output
Arrays of Transforms

Transform[]
Transform[]

SHADOWS

Master

Controller

INTERPOLATED
OUTPUT

(Weighted Avg.)

wA= 1.3

wB= 0.5

wC= 0.2

Controller A

Controller C

Controller B

Previous Approach
• Use controller scripts that follow the typical paradigm for controllers in ADAPT: Directly set

the transforms of the character.

• Since all controllers write to the same data, synchronization problems can arise,
tempting the programmer to make individual controllers communicate. If all
controllers need to communicate directly, adding new controllers becomes an n2
problem.

• Activating and de-activating controllers produces snapping and jittering artifacts as
there is no easy way to blend between arbitrary controller definitions.

Controller A

Controller C OUTPUT

Controller B

ON

ON

OFF

The character’s body twists even
though he should ALWAYS be gazing
at the ball. This happens when the
sitting and locomotion controller are
toggled.

Frame 1350 Frame 1351 Frame 1352

When gazing is toggled on and off,
the character snaps from the original
pose to the gazing pose in a single
frame. This looks jerky.

Frame 1424 Frame 1425 Frame 1426

Leg snap visibly –
difference between
first three frames is
small. Difference
between third and
fourth frame is larger. Frame 3098 Frame 3099 Frame 3100 Frame 3101

Results
• The snapping exhibited earlier has been eliminated since we can crossfade between controllers.

• Character in red uses the OLD set of controllers. Character in brown uses NEW set.

wSMART = 0

wSit = 20

wSMART = 4.8

wSit = 20

wSMART = 12.5

wSit = 20

wSMART = 20

wSit = 20

wSMART = 20

wSit = 13.4

wSMART = 20

wSit = 5.4

wSMART = 20

wSit = 0

• Our test case for integrating a complex controller was fading in SMARTBody, using it to
perform an example-based reach, then fading it out.

• Below, the SMARTBody skeleton is in blue, and the sitting controller in green. We can fade
from an arbitrary position to the reaching position by increasing SMARTBody’s weight, and
decreasing the weight of other controllers.

Red: The character’s body twists
even though he should ALWAYS be
gazing at a target. This happens
when the sitting and locomotion
controller are toggled.
Brown: Controllers are crossfaded,
thus no twisting happens.

Frame 932 Frame 933 Frame 934 Frame 935

Red: Legs snap. First three frames
are very similar, last frame is
different.
Brown: Difference between any two
frames is small, since locomotion
controller is faded out smoothly. Frame 4122 Frame 4123 Frame 4124 Frame 4125

Red: Character
snaps to gazing
pose in one frame
(582-583).
Brown: Character
fades to gazing
pose over many
frames. Frame 582 Frame 583 Frame 589 Frame 595 Frame 601 Frame 607 Frame 612

